

Welcome to pyimagetest’s documentation!

If you have ever worked with multiple image backends at the same time you know
that it can cumbersome to check images from different backends for equality.
pyimagetest is a Python library that provides utilities for unit testing
with images. It provides ImageTestCase
that enables convenient image loading and comparison.

As of now the following image backends are builtin:

	imageio [https://imageio.github.io/]

	Pillow [https://python-pillow.org/]

	torchvision [https://pytorch.org/docs/stable/torchvision/index.html]

pyimagetest requires Python 3.6 or later and is based on
numpy [https://numpy.org/]. The code lives on GitHub [https://github.com/pmeier/pyimagetest] and is licensed under the 3-Clause BSD License [https://opensource.org/licenses/BSD-3-Clause].

	Getting Started
	Installation

	Usage examples

	Contributing
	Code format and linting

	Tests

	Documentation

	Package Reference
	pyimagetest

Getting started

	Installation
	Installation with builtin backends

	Usage examples
	General usage

	Working with a single backend and / or file

	Creating a custom backend

Installation

pyimagetest is a proper Python package and listed on
PyPI [https://pypi.org/project/pyimagetest/]. To install the latest stable
version run

pip install pyimagetest

To install the latest unreleased version from source run

git clone https://github.com/pmeier/pyimagetest
cd pyimagetest
pip install .

Installation with builtin backends

Although pyimagetest has support for some
image backends built in,
by default none are installed. To install the requirements for all builtin
backends, run the pip command with the [builtin_backends] extra.

pip install pyimagetest[backends]

Usage examples

The following examples showcase the functionality of pyimagetest. This requires some
backends to be installed. You can either install them for each example individually
or simply install all builtin backends.

General usage

	Requirements: pip install imageio Pillow

ImageTestCase provides two convenience methods
to ease unit testing with images:

	load_image() loads and image from
a file with a given backend.

	assertImagesAlmostEqual()
compares two images of possible different backends on equality.

A simple I/O test that compares imageio and Pillow could look like this:

import pyimagetest
from os import path

class ImageTester(pyimagetest.ImageTestCase):
 def test_io(self):
 file = path.join("path", "to", "test", "image")

 imageio_image = self.load_image(file, backend="imageio")
 pil_image = self.load_image(file, backend="PIL")

 self.assertImagesAlmostEqual(imageio_image, pil_image)

Working with a single backend and / or file

	Requirements: pip install imageio

If you mainly work with a single image backend and / or a file, you can ease up your
workflow by overwriting
default_image_backend() and / or
default_image_file().
The return values are then used in
load_image()
if no backend and / or file is given:

import pyimagetest
from os import path

class ImageTester(pyimagetest.ImageTestCase):
 def default_image_backend(self):
 return "imageio"

 def default_image_file(self):
 return path.join("path", "to", "test", "image")

 def test_io(self):
 file = path.join("path", "to", "test", "image")
 backend = "imageio"

 specific_image = self.load_image(file, backend)
 default_image = self.load_image()

 self.assertImagesAlmostEqual(specific_image, default_image)

Creating a custom backend

	Requirements: pip install imageio

If you want to work with an backend not included in pyimagetest you can create
your own by subclassing ImageBackend:

from pyimagetest.backends import ImageBackend
import imageio

class MyImage:
 @staticmethod
 def from_numpy(data):
 ...

 def to_numpy(self):
 ...

class MyBackend(ImageBackend):
 def native_image_type(self):
 return MyImage

 def import_image(self, file):
 return MyImage.from_numpy(imageio.imread(file))

 def export_image(self, image):
 return image.to_numpy()

To able to access MyBackend at runtime you can add it within the constructor of
the test case:

import pyimagetest
from os import path

class ImageTester(pyimagetest.ImageTestCase):
 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.add_image_backend("MyBackend", MyBackend())

 def test_my_backend(self):
 file = path.join("path", "to", "test", "image")

 my_image = self.load_image(file, backend="MyBackend")

Note

If you add a custom backend with the same native_image_type() as a builtin backend, you can remove the builtin one with
remove_image_backend(). Otherwise
the automatic backend inference of
assertImagesAlmostEqual() might not
work as intended.

Note

If you create a custom backend based on an open-source Python package, consider
contributing it to pyimagetest.

Contributing guide lines

We appreciate all contributions. If you are planning to contribute bug-fixes or
documentation improvements, please open a
pull request (PR) [https://github.com/pmeier/pyimagetest-new/pulls]
without further discussion. If you planning to contribute new features, please open an
issue [https://github.com/pmeier/pyimagetest-new/issues]
and discuss the feature with us first.

To start working on pyimagetest-new clone from the latest version and install
the development requirements:

PYIMAGETEST-NEW_ROOT = pyimagetest-new
git clone https://github.com/pmeier/pyimagetest-new $PYIMAGETEST-NEW_ROOT
cd $PYIMAGETEST-NEW_ROOT
pip install -r requirements-dev.txt
pre-commit install

Every PR is subjected to multiple checks that it has to pass before it can be merged.
The checks are performed by tox [https://tox.readthedocs.io/en/latest/] . Below
you can find details and instructions how to run the checks locally.

Code format and linting

pyimagetest-new uses isort [https://timothycrosley.github.io/isort/] to sort the
imports, black [https://black.readthedocs.io/en/stable/] to format the code, and
flake8 [https://flake8.pycqa.org/en/latest/] to enforce
PEP8 [https://www.python.org/dev/peps/pep-0008/] compliance.

Furthermore, pyimagetest-new is PEP561 [https://www.python.org/dev/peps/pep-0561/]
compliant and checks the type annotations with mypy [http://mypy-lang.org/] .

To format your code run

cd $PYIMAGETEST-NEW_ROOT
tox -e format

Note

Amongst others, isort and black are run by
pre-commit [https://pre-commit.com/] before every commit.

To run the full lint check locally run

cd $PYIMAGETEST-NEW_ROOT
tox -e lint

Tests

pyimagetest-new uses pytest [https://docs.pytest.org/en/stable/] to run
the test suite. You can run it locally with

cd $PYIMAGETEST-NEW_ROOT
tox

Note

pyimagetest-new adds the following custom options with the
corresponding @pytest.mark.* decorators:
- --skip-large-download: @pytest.mark.large_download
- --skip-slow: @pytest.mark.slow
- --run-flaky: @pytest.mark.flaky

Options prefixed with --skip are run by default and skipped if the option is
given. Options prefixed with --run are skipped by default and run if the option
is given.

These options are passed through tox if given after a -- flag. For example,
the CI invocation command is equivalent to:

cd $PYIMAGETEST-NEW_ROOT
tox -- --skip-large-download

Documentation

To build the html and latex documentation locally, run

cd $PYIMAGETEST-NEW_ROOT
tox -e docs

Package reference

	pyimagetest

pyimagetest

	
class pyimagetest.ImageBackend

	ABC for image backends.

Each subclass has to implement the native_image_type as well as the basic
I/O methods import_image() and export_image().

	
abstract export_image(image: Any) → numpy.ndarray [https://numpy.org/doc/1.18/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Exports an image to numpy.ndarray [https://numpy.org/doc/1.18/reference/generated/numpy.ndarray.html#numpy.ndarray].

The output is of shape == (height, width, channels) and of
dtype == numpy.float32.

	Parameters

	image – Image to be exported.

	
abstract import_image(file: str [https://docs.python.org/3.6/library/stdtypes.html#str]) → Any

	Imports an image from file.

	Parameters

	file – Path to the file that should be imported.

	
abstract property native_image_type

	Native image type of the backend.

This is used to infer the
ImageBackend from a given image.

	
pyimagetest.add_image_backend(name: str [https://docs.python.org/3.6/library/stdtypes.html#str], backend: pyimagetest.backends.ImageBackend, allow_duplicate_type: bool [https://docs.python.org/3.6/library/functions.html#bool] = False) → None [https://docs.python.org/3.6/library/constants.html#None]

	Adds custom backend to the available backends.

	Parameters

	
	name – Name of the backend

	backend – Backend

	allow_duplicate_type – If True, no check for duplicate
native_image_type s is performed. Defaults
to False.

	Raises

	RuntimeError [https://docs.python.org/3.6/library/exceptions.html#RuntimeError] – If another ImageBackend with the same
 native_image_type already present and
 allow_duplicate_type is False.

Note

If you add an ImageBackend with a duplicate
native_image_type, the automatic backend
inference with infer_image_backend() might not work correctly.

	
pyimagetest.remove_image_backend(name: str [https://docs.python.org/3.6/library/stdtypes.html#str]) → None [https://docs.python.org/3.6/library/constants.html#None]

	Removes a backend from the known backends.

	Parameters

	name – Name of the backend to be removed

	
pyimagetest.infer_image_backend(image: Any) → pyimagetest.backends.ImageBackend

	Infers the corresponding backend from the image.

	Parameters

	image – Image with type of any known backend

	Raises

	RuntimeError [https://docs.python.org/3.6/library/exceptions.html#RuntimeError] – If type of image does not correspond to any known
 image backend

	
pyimagetest.assert_images_almost_equal(image1: Any, image2: Any, mae: float [https://docs.python.org/3.6/library/functions.html#float] = 0.01, backend1: Optional[Union[pyimagetest.backends.ImageBackend, str [https://docs.python.org/3.6/library/stdtypes.html#str]]] = None, backend2: Optional[Union[pyimagetest.backends.ImageBackend, str [https://docs.python.org/3.6/library/stdtypes.html#str]]] = None) → None [https://docs.python.org/3.6/library/constants.html#None]

	Image equality assertion.

	Parameters

	
	image1 – Image 1

	image2 – Image 2

	mae – Maximum acceptable mean absolute error (MAE) [https://en.wikipedia.org/wiki/Mean_absolute_error]. Defaults to 1e-2.

	backend1 – ImageBackend or its name for image1. If omitted,
the backend is inferred from image1 with infer_image_backend().

	backend2 – ImageBackend or its name for image2. If omitted,
the backend is inferred from imag2 with infer_image_backend().

	Raises

	AssertionError [https://docs.python.org/3.6/library/exceptions.html#AssertionError] – If image1 and image2 are not equal up to the
 acceptable MAE.

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 pyimagetest	

Index

 A
 | E
 | I
 | M
 | N
 | P
 | R

A

 	
 	add_image_backend() (in module pyimagetest)

 	
 	assert_images_almost_equal() (in module pyimagetest)

E

 	
 	export_image() (pyimagetest.ImageBackend method)

I

 	
 	ImageBackend (class in pyimagetest)

 	
 	import_image() (pyimagetest.ImageBackend method)

 	infer_image_backend() (in module pyimagetest)

M

 	
 	
 module

 	pyimagetest

N

 	
 	native_image_type() (pyimagetest.ImageBackend property)

P

 	
 	
 pyimagetest

 	module

R

 	
 	remove_image_backend() (in module pyimagetest)

 nav.xhtml

 Table of Contents

 		
 Welcome to pyimagetest’s documentation!

 		
 Getting Started

 		
 Installation

 		
 Installation with builtin backends

 		
 Usage examples

 		
 General usage

 		
 Working with a single backend and / or file

 		
 Creating a custom backend

 		
 Contributing

 		
 Code format and linting

 		
 Tests

 		
 Documentation

 		
 Package Reference

 		
 pyimagetest

_static/minus.png

_static/plus.png

_static/file.png

